Low Tree-Rank Bayesian Vector Autoregression Models

Abstract

Vector autoregression has been widely used for modeling and analysis of multivariate time series data. In high-dimensional settings, model parameter regularization schemes inducing sparsity yield interpretable models and achieved good forecasting performance. However, in many data applica- tions, such as those in neuroscience, the Granger causality graph estimates from existing vector autoregression methods tend to be quite dense and difficult to interpret, unless one compromises on the goodness-of-fit. To address this issue, this paper proposes to incorporate a commonly used structural assumption — that the ground-truth graph should be largely connected, in the sense that it should only contain at most a few components. We take a Bayesian approach and develop a novel tree-rank prior distribution for the regression coefficients. Specifically, this prior distribution forces the non-zero coefficients to appear only on the union of a few spanning trees. Since each span- ning tree connects p nodes with only (p − 1) edges, it effectively achieves both high connectivity and high sparsity. We develop a computationally efficient Gibbs sampler that is scalable to large sample size and high dimension. In analyzing test-retest functional magnetic resonance imaging data, our model produces a much more interpretable graph estimate, compared to popular exist- ing approaches. In addition, we show appealing properties of this new method, such as efficient computation, mild stability conditions and posterior consistency.

Publication
Journal of Machine Learning Research