A Generalized Bayesian Approach for High-dimensional Robust Regression with Serially Correlated Errors and Predictors

TBD, 2025

This paper presents a loss-based generalized Bayesian methodology for high-dimensional robust regression with serially correlated errors and predictors. The proposed framework employs a novel scaled pseudo-Huber (SPH) loss function, which smooths the well-known Huber loss, achieving a balance between quadratic and absolute linear loss behaviors. This flexibility enables the framework to accommodate both thin-tailed and heavy-tailed data effectively. The generalized Bayesian approach constructs a working likelihood utilizing the SPH loss that facilitates efficient and stable estimation while providing rigorous estimation uncertainty quantification for all model parameters. Notably, this allows formal statistical inference without requiring ad hoc tuning parameter selection while adaptively addressing a wide range of tail behavior in the errors. By specifying appropriate prior distributions for the regression coefficients – e.g., ridge priors for small or moderate-dimensional settings and spike-and-slab priors for high-dimensional settings – the framework ensures principled inference. We establish rigorous theoretical guarantees for the accurate estimation of underlying model parameters and the correct selection of predictor variables under sparsity assumptions for a wide range of data generating setups. Extensive simulation studies demonstrate the superiority of our approach compared to traditional quadratic and absolute linear loss-based Bayesian regression methods, highlighting its flexibility and robustness in high-dimensional and challenging data contexts.

Link to Paper